Thursday, February 14, 2008

How to view a solar eclipse safely

http://sunearth.gsfc.nasa.gov/eclipse/SEhelp/safety2.html
--link for more information

A total solar eclipse is probably the most spectacular astronomical event that most people will experience in their lives. There is a great deal of interest in watching eclipses, and thousands of astronomers (both amateur and professional) travel around the world to observe and photograph them.

A solar eclipse offers students a unique opportunity to see a natural phenomenon that illustrates the basic principles of mathematics and science that are taught through elementary and secondary school. Indeed, many scientists (including astronomers!) have been inspired to study science as a result of seeing a total solar eclipse. Teachers can use eclipses to show how the laws of motion and the mathematics of orbital motion can predict the occurrence of eclipses. The use of pinhole cameras and telescopes or binoculars to observe an eclipse leads to an understanding of the optics of these devices. The rise and fall of environmental light levels during an eclipse illustrate the principles of radiometry and photometry, while biology classes can observe the associated behavior of plants and animals. It is also an opportunity for children of school age to contribute actively to scientific research - observations of contact timings at different locations along the eclipse path are useful in refining our knowledge of the orbital motions of the Moon and earth, and sketches and photographs of the solar corona can be used to build a three-dimensional picture of the Sun's extended atmosphere during the eclipse.

However, observing the Sun can be dangerous if you do not take the proper precautions. The solar radiation that reaches the surface of Earth ranges from ultraviolet (UV) radiation at wavelengths longer than 290 nm to radio waves in the meter range. The tissues in the eye transmit a substantial part of the radiation between 380 and 1400 nm to the light-sensitive retina at the back of the eye. While environmental exposure to UV radiation is known to contribute to the accelerated aging of the outer layers of the eye and the development of cataracts, the concern over improper viewing of the Sun during an eclipse is for the development of "eclipse blindness" or retinal burns.

Exposure of the retina to intense visible light causes damage to its light-sensitive rod and cone cells. The light triggers a series of complex chemical reactions within the cells which damages their ability to respond to a visual stimulus, and in extreme cases, can destroy them. The result is a loss of visual function which may be either temporary or permanent, depending on the severity of the damage. When a person looks repeatedly or for a long time at the Sun without proper protection for the eyes, this photochemical retinal damage may be accompanied by a thermal injury - the high level of visible and near-infrared radiation causes heating that literally cooks the exposed tissue. This thermal injury or photocoagulation destroys the rods and cones, creating a small blind area. The danger to vision is significant because photic retinal injuries occur without any feeling of pain (there are no pain receptors in the retina), and the visual effects do not occur for at least several hours after the damage is done [Pitts, 1993].

The only time that the Sun can be viewed safely with the naked eye is during a total eclipse, when the Moon completely covers the disk of the Sun. It is never safe to look at a partial or annular eclipse, or the partial phases of a total solar eclipse, without the proper equipment and techniques. Even when 99% of the Sun's surface (the photosphere) is obscured during the partial phases of a solar eclipse, the remaining crescent Sun is still intense enough to cause a retinal burn, even though illumination levels are comparable to twilight [Chou, 1981, 1996; Marsh, 1982]. Failure to use proper observing methods may result in permanent eye damage or severe visual loss. This can have important adverse effects on career choices and earning potential, since it has been shown that most individuals who sustain eclipse-related eye injuries are children and young adults [Penner and McNair, 1966; Chou and Krailo, 1981].

No comments: